

Aphid management in ornamental crops masterclass

Harper Adams University (HAU), Edgmond, Newport TF10 8NB

Tuesday 3rd June 2025

Contents

Agenda

Time	Content	Speaker
	Harper Adams University (HAU), conference	room
09:00 - 09:30	Coffee, tea, and refreshments	
	Presentations	
09:30 - 10:10	Common aphid species found on ornamental crops	Dr. Joe Roberts and Prof. Tom
	 aphid biology, lifecycles, and identification. 	Pope, HAU
	Practical identification exercise	
10:10 - 10:50	Monitoring and biological control strategies for	Selchuk Kurtev, Zest
	ornamental crops	Sustainable ICM
10:50 - 11:00	Coffee, tea, and refreshments	
11:00 - 11:30	Understanding aphid host plant location for	John Owen, HAU
	improved monitoring	
11:30 - 12:00	Next generation of aphid biological control	Prof. Tom Pope, HAU
12:00 - 12:40	Crop protection options for aphid management	Selchuk Kurtev, Zest
	and integration into control programmes	Sustainable ICM
12:40 - 13:15	Lunch buffet	
	Practical session at HAU	
13:15 – 14:15	Tour of entomology department and laboratories	Dr. Joe Roberts and team,
	at HAU	HAU
14:15 – 15:00	Desktop exercise – planning an aphid management	All delegates
	programme using example crops – delegates will be	
	given an example crop to create a control	
	programme	
15:00 – 15:30	Summary quiz to establish learnings from the day –	All delegates
	an engaging multiple-choice quiz to round off the	
	masterclass	
15:30	Wrap up and depart	

BASIS and NRoSO continued professional development points will be available on the day of the workshop.

Location

Addresses and locations:

Harper Adams University, Edgmond, Newport TF10 8NB

(highlighted in yellow and A on the map) *What3words: ///laugh.bolts.exhales*

Common aphid species found on ornamental crops – aphid biology, lifecycles, and identification

Prof. Tom Pope, HAU

Aphids

- Sternorrhyncha from the Greek words 'sterno' meaning 'chest' and 'rhyncose' meaning 'nose'
 - This is because the mouth starts between the front legs!
- There are 16,000 species, all are sap feeding and many have lost the ability to walk or flying during parts of their life-cycle

Aphids

- There are three families of aphids:
- Adelgidae often covered in wax, produce galls and associated with conifers
 Phylloxeridae most notable species is grape phylloxera (*Daktulosphaira*)
- vitifoliae)Aphididae the most diverse family and includes all species discussed today
- In total there are around 5,000 species of aphid
- · Characterised by complicated lifecycles and rapid reproduction

Harper Adams University

Aphids – life cycles

 Aphids may reproduce asexually and sexually throughout the year or asexually only – holocyclic or anholocyclic

- Eggs are cold tolerant and sexual reproduction leads to greater genetic mixing
- Asexual reproduction often leads to formation of dominant clones

Aphids – life cycles

- Aphids may feed on related hosts throughout the year or switch between unrelated hosts (typically a woody host and an herbaceous host) - autoecious or heteroecious
- Host switching is typically linked with sexual reproduction

Aphids – morphs

• How many species can you see?

Aphids – reproduction

- Asexual reproduction is characterised by the birth of live young
- Inside the aphid you see, eggs have hatched and developed (daughter) and inside the daughter, eggs have hatched and developed (granddaughter)!
 This is known as telescoping of generations
- Aphids can complete their development in as little as 7 days

Aphids – reproduction

- In a season the potential descendants of one female aphid contain more substance than 500 million stout men' - Thomas Henry Huxley (1858)
- 'In a year aphids could form a layer 149 km deep over the surface of the earth. Thank God for limited resources and natural enemies' - Richard Harrington (1994)

Peach-potato aphid (Myzus persicae)

Identification

- Very wide host range
- Typically, asexual only in the UK
- Small/medium (1.5-2.5mm) aphid, variable body colour
- Antennal tubercles very well developed, characteristic 'W' shape
- Darker patches at base of siphunculi
- Siphunculi with slight flange and black tips
- Typically, overwinters as active forms in the UK
- Widespread insecticide resistance e.g. pyrethroids

Harper Adams University

Shallot aphid (Myzus ascalonicus)

Identification

- Fairly wide host range, only found in UK from 1940s onward
- Typically, asexual only in the UK
- Small (1-2mm) aphid, variable body colour from pale brown to green-brown to yellow-brown
- Antennal tubercles well developed
- Siphunculi are slightly swollen
- Wing vein closest to abdomen is darker
- Colonies distort foliage

Harper Adams University

Melon and cotton aphid (Aphis gossypii)

Identification

- Very wide host range
- Small (1-1.5mm) aphid, with variable body colour from almost black to pale yellow
- Generally larger and darker at cooler temperatures and smaller and paler at warmer temperatures
- Antennal tubercles not developed
- Siphunculi slightly longer than cauda
- Colonies cause leaves to turn yellow and wilt
- Widespread insecticide resistance e.g. to pyrethroids

Harper Adams University

Black bean aphid (Aphis fabae)

Identification

- · Fairly wide host range
- Overwinters as eggs
- Small/medium (1.5-3mm) aphid
- Antennae shorter than body
- Matt black but may develop white wax markings
- Legs are white in colour
- Regularly ant attended
- Colonies distort leaves, buds and flowers

Harper Adams University

Glasshouse-potato aphid (Aulacorthum solani)

Identification

- Fairly wide host range
- Medium (2-3mm), shiny green yellow aphid
- Antennal tubercles well developed
- Darker patches at base of siphunculi
- Siphunculi long with black tips
- In winged aphids, veins closest to abdomen are dark
- May overwinter as eggs or active forms but diverse life cycles reported
- Colonies distort leaves

Potato aphid (Macrosiphum euphorbiae)

Identification

- Very wide host range
- Large (1.7-3.5mm) aphid, shiny green, yellow or pink as adults
- Introduced to UK around 1917
- Immature forms are waxy coating and darker stripe running down back of aphid
- Legs, siphunculi, and cauda are characteristically long
- Adults often have red spots on abdomen (eyes of unborn nymphs)
- May overwinter as eggs but more often as active forms

Lupin aphid (Macrosiphum albifrons)

Identification

- Narrow host range, associated with lupins and other legumes
- Very large (3.2-4.5mm) aphid, pale bluishgreen in colour but dusted with wax
- Native to North America but found in UK from 1981 onwards
- Thought to reproduce asexually only in Europe
- Legs, siphunculi, cauda all long and siphunculi have darker tips
- May overwinter as eggs but more often as active forms

Harper Adams University

Rose aphid (Macrosiphum rosae)

Identification

- Fairly narrow host range, associated with roses and other Roseae
- Large (1.7-3.6mm) aphid, shiny dark green to pink to red-brown in colour
- Siphunculi are long and characteristically black in colour
- Cauda is pale and rather elongated
- Produces masses of honeydew and may check plant growth
- Overwinters as eggs

Harper Adams University

Mottled arum aphid (Neomyzus circumflexus)

Identification

- Fairly wide host range
- Adults are shiny and pale to bright green in colour
- Characteristic dark markings on abdomen, often horseshoe shaped
- Antennae, siphunculi, and cauda are pale
- Very rapid reproduction and colonies
 produce masses of honeydew
- Winged forms rarely seen and overwinters as active forms

Woolly beech aphid (Phyllaphis fagi)

Identification

- Narrow host range, associated with beech trees
- Overwinters as eggs
- Large (2.-3.2mm) aphid that is yellowish-green in colour there is a smaller summer form)
- Coated in a mass of wax
- Siphunculi are pore like (no tube), cauda is similarly small
- Produces masses of honeydew

Harper Adams University

Strawberry aphid (Chaetosiphon fragaefolii)

Identification

- Narrow host range, associated with strawberries and some species of Potentilla
- Small (1-2mm) pale aphid
- Antennal tubercles well developed
- Body of wingless aphids covered in fine hairs
- Pale thin siphunculi with flange at end (twice as long as cauda)
- Antennae have a long final segment
- Overwinter as active forms

Harper Adams University

Finding information

- Online
 - InfluentialPoints: https://influentialpoints.com/Gallery/Aphid_genera.htm
 - Aphids on the Worlds Plants: https://aphidsonworldsplants.info/
- Books
 - Aphids on the World's Herbaceous Plants and Shrubs: <u>https://www.wiley.com/en-</u> <u>hk/Aphids+on+the+World's+Herbaceous+Plants+and+Shrubs%2C+2+V</u> olume+Set-p-9780471489733 very expensive!

Harper Adams University

Monitoring and bio strategies for orna Selchuk Kurtev, Zest Sus	mental cr	ops HTA
Monitoring and biological contro for ornamental crops Selchuk Kurtev, Zest Sustainable		Notes
WHAT I WILL COVER	HTA	
> Importance of monitoring		
Monitoring guidelines		
> Monitoring methods		
> Biological control of aphids		
> Summary		
	Zest. Sutanale CM	
Importance of monitoring	HTA	
 Assessment of aphid species and levels Aid in decision making on control strategies 		
Ald in decision making on control strategies Biocontrol Chemical control		
 Early intervention before becoming a problem Provides better understanding of pest vs 		
 Provides better understanding of pest vs beneficial ratios Provides clues for poor control strategies 		
> Trovides clues for poor control strategies		
	705	
	Suttainable ICM	

R **Monitoring guidelines** HTA > Presence and evidence of aphids – look for honeydew, aphid skins, actual aphids > Presence of natural enemies - are there parasitic wasps, ladybirds, hoverflies etc. > Evidence of potentially contributing factors – plants under stress, weeds, others ➢ Evidence of damage: • Is the damage caused by aphids or other factors • Where the damage is found • Are live aphids still found in the crop > Consider the time of year (seasonal peaks) > Frequency of monitoring should match the aphid development by species Indicator crops zest **Frequency of monitoring** HTA ➢ Regular intervals > Determined by: > Species – host specific species easier than generalist species > Crop – some crops are also used as indicator crops > Situation crops are grown in ➢ Crop value, crop volume, sales window Protecte January to March Monthly Fortnightly Weekly April to October Fortnightly Weekly Twice weekly November to January Monthly Fortnightly Weekly Zest Size of area, speed and records HTA > Depends on the crop, size of batches, and nursery size 0-5% Low infestation > Enough to provide field representation 6-10% Medium infestati > For every 1,000 pots minimum 10 pots 11-25% High infestation 3 > Outdoor field grown crops – minimum 10m for every 100m of crops Use of set patterns – S, X, W, V, Z, U Glasshouse crops – on 60m² minimum 1m² of plants (for 2L pots 28-36 pots) ➢ Walking speed 1-2m/s for field and 0.5-2m/s for protected situations Presence of Veronica 'First Shallot aphid 2 ladyb 10 2 zest

Monitoring methods

Zest

HTA

zest

- > Visual / crop walking count, identification, location, crop damage
- Sticky / water traps only relevant if monitoring winged adults
- > Indicator plants informative, but not the only approach
- > Nursery staff unreliable, but never ignoring it
- > Field and crop history important for building a control strategy
- > Sales complaints too late, but a learning opportunity

Biological control of aphids

- 1. Cannot rely on the biocontrol strategy alone!
- 2. Cannot rely on the biocontrol strategy alone!
- 3. Cannot rely on the biocontrol strategy alone!
- 4. Backbone of effective control is a reduction in the background level of aphids
- 5. Particularly effective in glasshouses and to an extent in tunnels
- 6. Requires proactive approach, i.e. introduce before aphid populations increase
- 7. Do not use as a curative option
- 8. Risk of hyperparasitism if not carefully monitored

Which biocontrol methods

- 1. Banker plants mainly for mono cropping situations
- 2. Parasitic wasps good range available, some clever marketing by the biocontrol companies, effective but slow
- 3. Predatory insects (lacewings, hoverflies, ladybirds, predatory midges) – veracious feeders, good for hot spot treatments, can be costly, sensitive to crop protection products

zest

15

		Notes
Parasitic wasps	HTA	
Aphidius colemani Aphidius ervi Aphidius matricarea Aphelinu	s abdominalis	
	La construction de la constructi	
	Zest Sustainable ICM	
ſ		
Parasitic wasps	HTA	
Ephedrus cerasicola Praon volucrae	ΠΙΑ	
	Aphiline B	
	tect	
	ZEST	
	_	
Predatory insects	HTA	
	61	
	7057	
	Zest	

Biocontrol planning

- 1. Light and temperature minimum 9 hours of light and 8°C for 4 hours. Around WK 10-14
- 2. Introduction rates always start with higher rates at the beginning 0.5/m²
- 3. Cropping types check potting plan vs current stock
- 4. Sales windows the worst sale is the one that hasn't made it out of the door!
- 5. Crop protection programme avoid pyrethroids during low light intensity
- Irrigation system in place overhead is not good news

3

HTA

zest

HTA

SUMMARY

- \succ Monitoring is the first and most important step of IPM
- \succ Monitoring, aphid identification, and record keeping are crucial to decision making
- Biocontrol alone is not an option for aphid control on ornamentals
- > Background pressure of aphids must be reduced to a minimum
- > Biocontrol introduction and planning should be based on your own nursery
- Good availability of products and formats, but cost can be prohibitive in some crops/sectors
- > Crop protection product choice is very important

Understanding aphid host plant location for improved monitoring

John Owen, HAU

STAGE 1: PRE-ALIGHTING BEHAVIOUR

STAGE 2: INITIAL PLANT CONTACT AND ASSESSMENT OF SURFACE CUES BEFORE STYLET INSERTION

STAGE 3: PROBING THE EPIDERMIS

STAGE 4: STYLET PATHWAY ACTIVITY

STAGE 5: SIEVE ELEMENT PUNCTURE AND SALIVATION

STAGE 6: PHLOEM ACCEPTANCE AND SUSTAINED INGESTION

Powell (2006)

Finch and Collier (2003)

Next generation of aphid biological

control

Prof. Tom Pope, HAU

Parasitoid resistance in aphids - how?

- Complex trait.
- Intrinsic resistance: encoded in the aphid genome.
- Multiple traits provided by secondary endosymbionts (SE).
- Three SE have been described to provide parasitoid resistance.

Phenotype	associated symbiont	reference
Aphid thermal tolerance	Serratia symbiotica *B. aphidicola	Montllor et al., 2002 Dunbar et al., 2007
Parasitoid resistance	Hamiltonella defensa	Oliver <i>et al.</i> , 2003, Oliver <i>et al.</i> , 2005 & Ferrari <i>et al.</i> , 2004
	Regiella insecticola	Vorburger et al., 2010
	X-type	Heyworth & Ferrari, 2005
Reduced lady beetle survival	H. defensa/S. symbiotica	Costopoulos et al., 2014
Resistance to fungal pathogen	R. insecticola	Scarborough et al., 2005
	X-type	Heyworth & Ferrari, 2005
Colour polymorphism	Ca. Rickettsiella viridis	Tsuchida et al., 2010

The complexity of parasitoid resistance

- Specific interactions between aphid – parasitoid species.
- Genotype by genotype interactions between aphids- symbiontsparasitoids.

Other impacts of secondary endosymbionts

- Modulation of plant and host volatile chemical cues.
- * Directly emanation of volatile cues.
- Modulation of plant defences by reducing HIPVs emissions or altering physical structure.
- Alteration of host emitted cues from frass, honeydew, body colour.
- Changes on host defensive behaviours and dispersion to avoid parasitism.
- Alteration of risk cues associated with parasitoid antagonists (modulating competition).

1. Potato aphid clonal variation in strawberry crops in the UK

2. The role of clonal variation in the interaction

Checking the role of genotype -

parasitism success

Checking the role of endosymbiont infectionparasitoid searching behaviour

 $G_{\text{Const}}(\text{in: } X_2 = 19, 1; df= 4, P < 0.001$

	-	-
		-
		_
		_
		_
		-
dist. with		
nparisons		_
		 _
		_
		-
		-
		 _
		-
		-
		_
dist. with parisons		
		_
		 _
		_
		 _
		 _
		 _
,		
dist. with parisons		

Checking the role of endosymbiont infection – rejections by parasitoids

Checking the role of endosymbiont infection – parasitism success

4. The effect of potato aphid variation on field conditions

Over 2 seasons

4. The effect of potato aphid variation on field conditions a diversities HD HD SS RI HD_SS RI HD_RI SS_RI HD_SS_R NONE β diversities Endosymbiont prevalence vs parasitism pressure · Parasitism pressure correlations Effect of polytunnel size IIL Ś Ý Á IDIEIB Ć Q Á Ř Ď Ġ ĠIX Ť JIĚ Ř Genotvnes 4. Summary • Variation on potato aphid susceptibility to Aphidius ervi in the UK. · Limited aphid genotype effect on parasitoid searching behaviour, aphid defensive behaviour and parasitism success. BUT significant effect of endosymbiont infection status. • Importance of genetic diversity on parasitoid populations. • Importance of understanding the aphid-parasitoid dynamics in field conditions. ACKNLOWEDGMENTS Dr. Tom Pope, Dr. Joe Roberts, Dr. Ali Karley, Dr. Francis Wamonje, Dr. Michelle Fountain, Dr. Bethan Shaw, Harriet Duncalfe, Gaynor Malloch, Danielle Henderson-Holding. The James Harper Adams NIAB Hutton R University Institute FUNDING BERRY GARDENS

Image: Control register Image: Control register Variable Image: Control register Image: Control register</

	Notes
Parasitoid foraging behaviour	
Host searching behaviour ² :	
Host habitat Host location location	
Herbivore-induced plant volatiles (HIPVs) HIPVs and host-originating chemical cues	
2. Vinson, S. B. (1976): Hour selection by reset parabolating. Annual Average distances (p. 211), pp. 105–133. doi:10.1146/annuar.col.21.01076.000545.	
Parasitoid foraging behaviour	
Host searching behaviour:	
Host habitat Host Host Host acceptance location	
Parasitoid foraging behaviour and learning	
Parasitoid behavioural responses to chemical cues	
Innate Fixed responses	
Learned "The process that produces an adaptive change in an individual's behaviour as the result of experience"	

Notes

Applying parasitoid olfactory conditioning Notes The training of commercially reared parasitoids to respond specifically and/or more strongly to cues involved in the target pest system using the learning mechanisms Before Conditioning After Conditioning Specific HIPVs • • VOCs **Project Aim and Objectives:** Explore how insect learning can be used to improve the efficiency of parasitoids as biological controls in sustainable crop protection · Characterise chemical cues associated with host-searching behaviour • Determine the learning abilities of commercially available parasitoids · Develop mass-rearing techniques that incorporate parasitoid learning · Evaluate the impact of improved parasitoid learning on biological control efficacy under semi-field conditions Initial experiments Rearing system Parasitism assay Data recording Test combinations 3.Wasps were placed in a Petri dish with an aphid host/plant combination 5.The number of 1. Wasps were reared on Brevicoryne brassicae/Pak choi (Experiment 1) and Myzus persicae/Pak choi (Experiment 2) leaves were mified aphid transferred on was recorded 4 clean plants 2. Wasps were offered four different aphid host/plant combinations: M.persicae/Pak choi, M.persicae/Oilseed rape, B.brassicae/Pak choi, B.brassicae/Oilseed rape

Thank you for listening!	
Supervisory Team	
Prof Tom Pope Dr Matthew Back	
Dr Joe Roberts	н /
Prof Helmut van Emden	Harper Adams University
Dr Liam Harvey	-
Dr Neil Ward	Diobe/T
nfoskolou@haper-adams.ac.uk	SUSTAINABLE CROP MANAGEMENT

Crop protection options for aphid management and integration into control programmes

Selchuk Kurtev, Zest - Sustainable ICM

Sequoia

- > Similar to Gazelle SG, but considered more effective
- > Systemic, contact and translaminar with good persistency (up to 14 days)
- ➢ Movement only upwards
- ➢ Fast acting and effective on all aphid species
- ➤ Taken up by leaves
- ➢ Side effects on other sap sucking pests
- ➢ Good tank miscibility
- ➢ Good crop safety
- Compatible with biocontrol, but must leave time between introductions

Flipper

HTA

HTA

Todenario of Carboa Agri DROUP 4C INSEC

Zest

2

- The effectiveness of ELIPPER's active ingredient – Unsaturated Carboxylic Acids (carbon chain lengths C14 – C20) is achieved by the lipophilic carbon chains penetrating the external layers of the target pest.
- 7 These unsaturated part of the carbon chains interacts with multiple vital metabolic processes. This interferes with feeding activity, resulting in mortality.

Appendix

- 1. How to crop monitor https://www.youtube.com/watch?v=IqXLutRZ0GI
- 2. Top 5 tips before you start your biological control programme https://www.youtube.com/watch?v=COkT8yJj5PA
- 3. Biological maintenance the right tools, at the right time, in the right place <u>https://www.youtube.com/watch?v=j-RcWgNwvnU</u>
- 4. IPM application techniques <u>https://www.youtube.com/watch?v=QRv7TVpL408</u>
- Selection and use of biological control agents in the production of ornamental crops - aphid and whitefly - <u>https://www.youtube.com/watch?v=0UxPqztz7N0</u> Selection and use of biological control agents in the production of ornamental crops – mites and thrips - <u>https://www.youtube.com/watch?v=bYndw8Rptgk</u>
- Biocontrol introduction Part 1 (English) -<u>https://www.youtube.com/watch?v=GF2O5nh53ns</u>
- 7. Boosting biocontrols within IPM programmes -<u>https://projectblue.blob.core.windows.net/media/Default/Horticulture/Publicatio</u> <u>ns/Boosting%20Biocontrols%20Within%20IPM%20Programmes.pdf</u>
- 8. Sticky traps tips <u>https://www.youtube.com/watch?v=76zv7d_Zrq8</u>
- 9. AHDB Crop walkers' guides <u>https://horticulture.ahdb.org.uk/knowledge-</u> <u>library/crop-walker-guides</u>

www.hta.org.uk

www.zest-icm.co.uk